這將刪除頁面 "The Verge Stated It's Technologically Impressive"
。請三思而後行。
Announced in 2016, larsaluarna.se Gym is an open-source Python library developed to assist in the development of support learning algorithms. It aimed to standardize how environments are specified in AI research, making released research study more easily reproducible [24] [144] while providing users with an easy interface for interacting with these environments. In 2022, new advancements of Gym have been moved to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, Gym Retro is a platform for support learning (RL) research on computer game [147] utilizing RL algorithms and research study generalization. Prior RL research study focused mainly on enhancing agents to fix single tasks. Gym Retro provides the capability to generalize in between games with similar concepts but different appearances.
RoboSumo
Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents at first do not have understanding of how to even stroll, but are given the goals of finding out to move and to press the opposing representative out of the ring. [148] Through this adversarial learning procedure, the representatives find out how to adapt to altering conditions. When an agent is then eliminated from this virtual environment and placed in a new virtual environment with high winds, the representative braces to remain upright, wiki.rolandradio.net suggesting it had discovered how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competition in between representatives might develop an intelligence "arms race" that could increase an agent's capability to function even outside the context of the competitors. [148]
OpenAI 5
OpenAI Five is a team of 5 OpenAI-curated bots used in the competitive five-on-five computer game Dota 2, that learn to play against human players at a high ability level totally through experimental algorithms. Before ending up being a team of 5, the first public demonstration occurred at The International 2017, the yearly best champion competition for the game, where Dendi, an expert Ukrainian gamer, lost against a bot in a live individually matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had discovered by playing against itself for 2 weeks of genuine time, which the learning software application was an action in the direction of producing software application that can deal with complicated tasks like a cosmetic surgeon. [152] [153] The system uses a form of support knowing, as the bots learn over time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as killing an opponent and taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a full team of 5, and they had the ability to defeat teams of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibit matches against professional players, but wound up losing both video games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the reigning world champions of the video game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' final public look came later that month, where they played in 42,729 total video games in a four-day open online competitors, winning 99.4% of those video games. [165]
OpenAI 5's systems in Dota 2's bot gamer reveals the difficulties of AI systems in multiplayer online battle arena (MOBA) video games and how OpenAI Five has shown making use of deep support knowing (DRL) agents to attain superhuman competence in Dota 2 matches. [166]
Dactyl
Developed in 2018, Dactyl utilizes device learning to train a Shadow Hand, a human-like robotic hand, to manipulate physical items. [167] It finds out totally in simulation utilizing the same RL algorithms and training code as OpenAI Five. OpenAI dealt with the item orientation issue by utilizing domain randomization, a simulation approach which exposes the learner to a range of experiences rather than trying to fit to reality. The set-up for Dactyl, aside from having motion tracking video cameras, likewise has RGB electronic cameras to enable the robotic to control an arbitrary item by seeing it. In 2018, OpenAI revealed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could fix a Rubik's Cube. The robot had the ability to fix the puzzle 60% of the time. Objects like the Rubik's Cube present complex physics that is harder to design. OpenAI did this by improving the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation approach of producing progressively more tough environments. ADR varies from manual domain randomization by not needing a human to specify randomization ranges. [169]
API
In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing brand-new AI models developed by OpenAI" to let developers contact it for "any English language AI job". [170] [171]
Text generation
The business has actually promoted generative pretrained transformers (GPT). [172]
OpenAI's initial GPT model ("GPT-1")
The original paper on generative pre-training of a transformer-based language design was composed by Alec Radford and his colleagues, and archmageriseswiki.com released in preprint on OpenAI's site on June 11, 2018. [173] It revealed how a generative design of language could obtain world knowledge and procedure long-range dependencies by pre-training on a varied corpus with long stretches of contiguous text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language model and the successor to OpenAI's initial GPT model ("GPT-1"). GPT-2 was revealed in February 2019, with only restricted demonstrative variations initially launched to the public. The full version of GPT-2 was not immediately launched due to issue about prospective misuse, including applications for composing fake news. [174] Some experts revealed uncertainty that GPT-2 positioned a considerable hazard.
In action to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to identify "neural phony news". [175] Other scientists, such as Jeremy Howard, warned of "the technology to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be difficult to filter". [176] In November 2019, OpenAI released the total variation of the GPT-2 language design. [177] Several sites host interactive demonstrations of various circumstances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose learners, illustrated by GPT-2 attaining cutting edge precision and perplexity on 7 of 8 zero-shot tasks (i.e. the model was not further trained on any task-specific input-output examples).
The corpus it was trained on, called WebText, contains slightly 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain issues encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language design and the successor to GPT-2. [182] [183] [184] OpenAI mentioned that the full variation of GPT-3 contained 175 billion criteria, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the full version of GPT-2 (although GPT-3 models with as few as 125 million criteria were also trained). [186]
OpenAI stated that GPT-3 was successful at certain "meta-learning" jobs and could generalize the function of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer knowing between English and Romanian, trademarketclassifieds.com and between English and German. [184]
GPT-3 drastically enhanced benchmark outcomes over GPT-2. OpenAI warned that such scaling-up of language models could be approaching or experiencing the essential ability constraints of predictive language designs. [187] Pre-training GPT-3 needed numerous thousand petaflop/s-days [b] of compute, compared to 10s of petaflop/s-days for the complete GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained design was not instantly launched to the general public for concerns of possible abuse, although OpenAI planned to permit gain access to through a paid cloud API after a two-month totally free private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed exclusively to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has furthermore been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the model can produce working code in over a lots programming languages, many successfully in Python. [192]
Several concerns with glitches, style defects and security vulnerabilities were cited. [195] [196]
GitHub Copilot has been implicated of producing copyrighted code, with no author attribution or license. [197]
OpenAI revealed that they would discontinue assistance for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They revealed that the upgraded technology passed a simulated law school bar test with a score around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might also read, analyze or create as much as 25,000 words of text, and pediascape.science compose code in all significant programs languages. [200]
Observers reported that the iteration of ChatGPT using GPT-4 was an improvement on the previous GPT-3.5-based version, with the caveat that GPT-4 retained a few of the issues with earlier modifications. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has actually declined to reveal different technical details and statistics about GPT-4, such as the accurate size of the model. [203]
GPT-4o
On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained state-of-the-art outcomes in voice, multilingual, and vision benchmarks, setting brand-new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller variation of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be particularly helpful for enterprises, start-ups and designers looking for to automate services with AI agents. [208]
o1
On September 12, 2024, OpenAI launched the o1-preview and o1-mini designs, which have been developed to take more time to consider their actions, causing higher accuracy. These models are particularly effective in science, coding, and reasoning tasks, and were made available to ChatGPT Plus and Team members. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3
On December 20, 2024, OpenAI unveiled o3, the successor of the o1 thinking model. OpenAI likewise revealed o3-mini, a lighter and faster variation of OpenAI o3. As of December 21, 2024, this model is not available for public use. According to OpenAI, they are testing o3 and o3-mini. [212] [213] Until January 10, 2025, safety and had the opportunity to obtain early access to these models. [214] The model is called o3 rather than o2 to avoid confusion with telecoms companies O2. [215]
Deep research
Deep research is a representative established by OpenAI, unveiled on February 2, 2025. It leverages the capabilities of OpenAI's o3 design to carry out comprehensive web surfing, information analysis, and synthesis, delivering detailed reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools enabled, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image classification
CLIP
Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to examine the semantic similarity in between text and images. It can notably be used for image classification. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer model that creates images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to translate natural language inputs (such as "a green leather bag shaped like a pentagon" or "an isometric view of a sad capybara") and create corresponding images. It can produce pictures of practical things ("a stained-glass window with a picture of a blue strawberry") in addition to items that do not exist in reality ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.
DALL-E 2
In April 2022, OpenAI revealed DALL-E 2, an updated variation of the model with more reasonable results. [219] In December 2022, OpenAI released on GitHub software application for Point-E, a brand-new basic system for converting a text description into a 3-dimensional model. [220]
DALL-E 3
In September 2023, OpenAI announced DALL-E 3, a more powerful design better able to create images from complex descriptions without manual prompt engineering and render complicated details like hands and text. [221] It was launched to the general public as a ChatGPT Plus function in October. [222]
Text-to-video
Sora
Sora is a text-to-video design that can create videos based on brief detailed triggers [223] in addition to extend existing videos forwards or in reverse in time. [224] It can create videos with resolution approximately 1920x1080 or 1080x1920. The maximal length of created videos is unidentified.
Sora's development group called it after the Japanese word for "sky", to represent its "limitless creative potential". [223] Sora's innovation is an adjustment of the innovation behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system utilizing publicly-available videos in addition to copyrighted videos licensed for that purpose, but did not expose the number or the precise sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, stating that it might generate videos up to one minute long. It also shared a technical report highlighting the approaches utilized to train the design, and the design's abilities. [225] It acknowledged some of its drawbacks, including struggles imitating complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "remarkable", however noted that they must have been cherry-picked and may not represent Sora's typical output. [225]
Despite uncertainty from some academic leaders following Sora's public demonstration, noteworthy entertainment-industry figures have actually revealed significant interest in the innovation's capacity. In an interview, actor/filmmaker Tyler Perry expressed his astonishment at the innovation's ability to produce reasonable video from text descriptions, mentioning its prospective to change storytelling and material creation. He said that his enjoyment about Sora's possibilities was so strong that he had decided to stop briefly prepare for broadening his Atlanta-based movie studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech acknowledgment design. [228] It is trained on a large dataset of diverse audio and is also a multi-task model that can carry out multilingual speech recognition as well as speech translation and language recognition. [229]
Music generation
MuseNet
Released in 2019, pipewiki.org MuseNet is a deep neural net trained to anticipate subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 styles. According to The Verge, a tune generated by MuseNet tends to start fairly however then fall under mayhem the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were utilized as early as 2020 for the web mental thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a snippet of lyrics and outputs tune samples. OpenAI stated the tunes "show local musical coherence [and] follow conventional chord patterns" however acknowledged that the songs do not have "familiar bigger musical structures such as choruses that repeat" and that "there is a substantial space" between Jukebox and human-generated music. The Verge specified "It's technologically remarkable, even if the results seem like mushy variations of songs that might feel familiar", while Business Insider specified "surprisingly, some of the resulting tunes are catchy and sound genuine". [234] [235] [236]
Interface
Debate Game
In 2018, OpenAI released the Debate Game, which teaches machines to dispute toy problems in front of a human judge. The purpose is to research study whether such an approach may assist in auditing AI decisions and in developing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and neuron of 8 neural network designs which are frequently studied in interpretability. [240] Microscope was created to examine the functions that form inside these neural networks quickly. The designs consisted of are AlexNet, VGG-19, different variations of Inception, and different versions of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, ChatGPT is an expert system tool built on top of GPT-3 that supplies a conversational user interface that permits users to ask questions in natural language. The system then reacts with an answer within seconds.
這將刪除頁面 "The Verge Stated It's Technologically Impressive"
。請三思而後行。